Rational bubbles during Poland's hyperinflation: implications and empirical evidence

M. Funke, S. Hall, M. Solá

Documento No. 11/93
Diciembre, 1993
Rational bubbles during Poland's hiperinflation: implications and empirical evidence

Michael Funke
Stephen Hall
Martín Solá

Documento No. 11/93

Octubre, 1993

The authors are researchers at the Centre for Economic Forecasting of the London Business School.

Financial support from ESRC grant Nº W116251003 is gratefully acknowledged. The first author is also grateful to the German Research Council (Deutsche Forschungsgemeinschaft) for financial support under Grant Nº Fu 178/3-1. We would like to thank Kenneth West and Wojtek Charemza for helpful comments on this paper although of course they bear no responsibility for errors or opinions expressed herein.
Abstract

It has been argued that the Polish hyperinflation at the end of the eighties was too excessive to be attributed to market fundamentals only. In this paper a range of indirect non-structural and structural tests for rational, exploding deterministic and stochastic bubbles are carried out. We adopt a new strategy based on the work of Hall and Sola (1993a) which allows for the possibility of switching regimes in the time series properties of the data to allow for both indirect tests and structural tests for the presence of stochastic bubbles.

Keywords: Rational Bubbles, Market Fundamentals, Non-stationarity, Integration, Cointegration.

JEL Classification: C22, E31, E41,

ISSN 0969-6598
1 INTRODUCTION

The possibility of the existence of rational bubbles has intrigued economic theorists for some time. Recently, considerable effort has been expended on an empirical search for evidence to determine the existence of this phenomenon (Shiller (1981), Diba and Grossman (1984, 1988a, 1988b), Evans (1989) and Hamilton and Whitman (1985) for example). We would contend that the importance of this question to economies in transition may be considerable. Many of the Eastern European economies have been subject to periods of very high inflation during their transition from planned to market economies. The appropriate policy to deal with this inflation may be very different depending on the true nature of the underlying process generating the inflation. If rational bubbles are not present, then all that needs to be done is to take firm control of the market fundamentals. If, however, inflation is being driven by a bubble phenomenon, then positive action will be needed to shock expectations off the bubble path.

The case of Poland in the late 1980s is an interesting one. Late 1989 saw a burst of hyperinflation which could easily be interpreted either as the authorities losing all control of the market fundamentals or as a classic bubble experience. Certainly, if we are ever to find sure evidence for the existence of such bubbles, it will be in a period of rapid upheaval such as this (see for example Abel et al(1979), Blejer(1978), Koedijk and Kool(1992), Taylor(1991) and Taylor and Phylaktis(1991)). Figure 1 details the development of the hyperinflation episode. It is worth noting that the black market exchange rate actually rose dramatically before either the price level or the money supply. We could then characterise the cause of the hyperinflation as being an autonomous rational bubble in the exchange rate which then led to an increase in price inflation and finally a rise in the money supply. However if agents are rational and were aware of the looseness of domestic monetary policy, the episode might be seen as a rational response to the expected future rise in the money

1The use of the term ‘hyperinflation’ in the context of the Polish experience during 1989/90 is controversial, since it lasted only seven months and on average amounted to in that period to somewhat less than 40% per month. Cagan(1956) defines hyperinflation as a process of steady price rise in excess of 50% in every consecutive month. We still propose to use the term ‘hyperinflation’ here, keeping in mind however that, as will be shown below, in Poland it was of a rather special character.
supply and prices. Thus, the exchange rate is seen as jumping to a true saddle path equilibrium in the face of future expected rises in the money supply. The appropriate policy response would differ depending on which of the two hypotheses is true. If it is a rational bubble, then we need simply work on the expectations mechanism to break the bubble. If, however, the cause is the setting of the fundamentals in the form of monetary policy, then this policy must be corrected.

The detailed economic events of the late 1980s are given in Wienicki (1990, 1991), which discusses the set of measures the government undertook to stabilise the inflation rate. Interestingly this involved not just a strong attempt to recapture control of the fundamentals but also a direct intervention in the expectations mechanism in the form of a highly punitive tax on future wage rises. We could interpret this tax as a direct attempt to burst a rational bubble and, certainly, making the currency convertible should have removed the bubble. It could, therefore, be argued that the authorities acted in a way which allowed for both possibilities and hence the subsequent control of inflation does little to help us understand the nature of the hyperinflation which took place. The aim of this paper is to see if more formal tests can be bought to bear to resolve the issue so that with a better understanding of the cause of these hyperinflation periods a more closely targeted set of polices may be designed.

It is important to emphasise that tests of bubbles can proceed in one of two main ways: we can set up the general null hypothesis that a bubble exists and then attempt to reject this hypothesis in favour of an unspecified structural alternative (eg. Diba and Grossman (1980a) set up this general hypothesis and then reject it if they find the data is integrated); or we may set up the null hypothesis that a particular structural model is correct (eg. West (1987)) and attempt to reject this model in favour of an alternative which includes the presence of a bubble. The first of these options has the ability to reject the presence of a bubble, but, if we fail to reject the bubble this can not be strictly interpreted as proving the bubbles existence. Similarly in the second case, the rejection of a structural model cannot be uniquely ascribed to the presence of the bubble; it may simply be that the structural model is misspecified. And so again this approach cannot prove absolutely the existence of a bubble. In general then we may reach a firm conclusion that a bubble does not exist but in the event that we fail to reject the presence of a bubble we must be wary of asserting its existence as we can never examine all possible structural models.
The plan of the paper is as follows: section 2 outlines the model and defines the type of bubbles we are dealing with; section 3 then carries out a range of tests for deterministic bubbles; section 4 broadens the testing procedure by investigating the possibility of stochastic bubbles using a switching regime model; section 5 tests the possibility of the existence of stochastic bubbles against a specific structural alternative and finally section 6 draws some general conclusions.
The Hyper Inflation Period
rates of growth

Figure 1

exchange rate
money
prices
A rational bubble may occur whenever an asset price is influenced by its own expectation. It is a self-confirming expectation about the future movement of the price which allows the price to depart from its fundamental determinants either permanently or temporarily. As a general case let,

\[x_t = aE(x_{t+1} | I_t) + z_t \]

where \(a \) is a parameter between 0 and 1, \(x_t \) is the price of the asset, \(E(.) \) is the mathematical conditional expectation, \(I_t \) is the information set and \(z_t \) is a vector of forcing variables (the fundamentals). The general solution to this equation may be considered in two parts: the first part is the fundamental solution, \(F_t \), which is generally regarded as economically meaningful and which is generally ensured by imposing a suitable transversality condition; the second part is the bubble component, \(B_t \), which is essentially an unstable but self-fulfilling set of expectations which violate long-run equilibrium conditions but which are consistent at every point along the infinite time horizon path. We may then define the general solution to (1) as,

\[x_t = F_t + B_t \]

where \(F_t = \sum_{\tau=0}^{\infty} a^\tau E(x_{t+\tau} | I_t) \)

and \(E(B_{t+1} | I_t) = a^{-1}B_t \)

The fundamental solution will exist, except in the case of extreme behaviour of the forcing variable (see Blanchard and Kahn (1980)). The bubble part of the solution is usually removed by the imposition of the transversality condition which prevents explosive departures from the fundamental path. If this transversality condition is not imposed, however, the bubble term may give rise to explosive solutions. In particular when (2) is deterministic, it implies that as time goes to infinity \(B \) will also approach infinity.

\[B_{t+1} = a^{-(\sigma+1)}B_0 \]
So if B_0 is non-zero it will give rise to an ever decreasing, or increasing divergence between x and its fundamental solution (although of course x is usually assumed not to go negative).

The type of bubble described above is a deterministic bubble; it will go on forever and it has important implications for the integratedness of x and the cointegration of x and its fundamental determinants. If a deterministic bubble is present, it puts an explosive root into the time series behaviour of x, so x can not, in principal, be reduced to stationarity by simple differencing, hence x is not an integrated variable. x and its fundamentals will diverge over time by a non-stationary factor (B_0) and hence x and its fundamentals will not be cointegrated. For this reason tests of integration and cointegration have been proposed as a means of rejecting the existence of a bubble.

Such deterministic bubbles are, however, implausible. If a bubble goes on forever, it should be so evident in the data that a formal test is hardly needed and, typically, when we discuss the possibility of bubbles we think of them as temporary phenomena which eventually burst. A much more interesting class of bubble is that of stochastic or periodically collapsing and regenerating bubbles. If the difference equation for B_0 is a stochastic equation, then at each point in time there is a probability that the bubble will burst. Evans (1991) has stressed that in the presence of such behaviour x will appear to be integrated and cointegrated with its fundamentals so that the cointegration tests are not able to detect such behaviour.

Recently, Hall and Sola (1993a) have proposed generalising the integration approach for testing for bubbles by introducing the possibility of different regimes within the sample period. This then allows for the possibility of stochastic bubbles which repeatedly collapse within the estimation period. The estimation strategy proposed relies on an application of the Hamilton (1990) filter. A remaining point of confusion, however, is that it may still be hard to distinguish between a bubble in the asset price itself and bubble-like behaviour in the determination of the fundamental series. One way of resolving this is to examine a range of series which have the same fundamentals. For example, using the illustration below, if the exchange rate and the price level are both fundamentally determined by the money supply
and the money supply is expected in the future to grow rapidly, then the exchange rate and prices would both appear to have an explosive root develop at the same time. If we examine either series independently, we would be unable to distinguish between a rational bubble in that series developing and the possibility of a fundamental explanation. But when we observe the simultaneous change in behaviour of both series, it points to the presence of the fundamental cause of the problem. If we find that the change in behaviour is not synchronised across the two series, it suggests that it is not a rational response to the expected change in the fundamental and that the true explanation may be a pure rational bubble.

Following recent studies on hyperinflation, a more concrete example of a bubble may be generated through the basic theoretical framework for money demand derived by Cagan (1956),

\[(m_t - p_t) = d_t - a(p_{t+1}^* - p_t) \quad a > 0 \]

where \(m_t \) is the log of money at time \(t \), \(p_t \) is the log of the general price level at time \(t \), \((p_{t+1}^* - p_t)\) is the expected inflation rate between \(t \) and \(t+1 \) conditional on information known at time \(t \), \(d_t \) is a set of extra forcing variables and \(a \) is the semi-elasticity of real money demand with respect to expected inflation. The higher the expected inflation the lower will be the demand for real money balances. Given the dynamics of money growth, equation (4) determines the dynamics of inflation. Rearranging gives,

\[p_t = \frac{1}{1+a} \left(m_t - d_t \right) + \left(\frac{a}{1+a} \right) \left(\frac{1}{1+a} \right) \sum_{i=1}^{\infty} \left(\frac{a}{1+a} \right)^i \left(m_{t+i}^* - d_{t+i}^* \right) \]

2 An exhaustive discussion of rational bubbles is given in Blanchard and Fischer (1989). The rational expectations solution to the Cagan model was first obtained by Sargent and Wallace (1973). For expositional purposes, we have ignored a constant term of the money demand equation; a constant was, however, included in the econometric work.

3 An important implicit assumption in this formulation is that other variables affecting money demand are constant and are thus included in the constant term \(a \). A generalization of this hypotheses is given in section 4 below.
which has saddle point properties. Equation (5), however, is not the only solution for the price level p_t. In the case that the transversality condition fails, there is a general rational expectations solution

$$p_t = \frac{1}{1+a+m} (m_t-d) + \frac{a}{1+a}$$

$$\left[\frac{1}{a} \sum_{i=1}^{\infty} \left(\frac{a}{1+a} \right)^i (m_{t-i} - d_{t-i}) \right] + \left(\frac{1+a}{a} \right) A_0 + \sum_{i=1}^{\infty} \left(\frac{1+a}{a} \right)^i u_i$$

where A_0 is an arbitrary constant and u_i is a stochastic disturbance term with $E[u_{i+1} | I_i] = 0$. The last two terms in equation (6) capture deterministic and stochastic price-level bubbles.

4 The transversality condition is given by

$$\lim_{t \to \infty} E[(1-a)Y_{t+1} | I_t] = 0.$$
3 TESTING FOR DETERMINISTIC BUBBLES

3.1 Integration Tests

In the following empirical section of the paper we raise the question whether Cagan's (1956) model for money demand under conditions of hyperinflation is consistent with the Polish experience at the end of the 1980s. In other words, could market fundamentals be viewed as the only determinants of inflation, or were deterministic rational bubbles present as well?

Several tests for deterministic rational bubbles now exist in the literature. The majority of these tests are conducted in a rational expectations framework. The underlying rational expectations hypothesis, however, places strong restrictions both on the relation between inflation and market fundamentals and on the form that rational bubbles can take. Therefore, the correct specification of the tests is often doubtful. As a consequence we first use a simple non-structural integration test. According to this test, rational bubbles à la Cagan strictly imply that the series is not integrated of any order. In a finite sample, this is usually taken to mean that the price exhibits a higher order of non-stationarity \(I(i) \) than any of the underlying fundamentals \(I(j) \) and \(i > j \) for all \(k \)'s. And so, the bubble hypothesis can be rejected if all series exhibit the same order of integrability. This property can be thought of as a necessary condition for the absence of rational bubbles.

A number of unit root tests in the spirit of the classical Dickey-Fuller analysis now exist in the literature. Table I presents the results from the Augmented Dickey-Fuller (ADF), Phillips (1988) and Phillips and Ouliaris (1990) tests.

5 Flood and Garber (1980) were the first to carry out a direct test for inflationary bubbles in the context of Cagan's (1956) model of German hyperinflation in the interwar period.

6 Hamilton and Whiteman (1985) and Diba and Grossman (1988) argue that all the empirical evidence in favour of rational bubbles may be interpreted as evidence of omitted fundamental variables in the relevant regressions, i.e. what appears to be a rational bubble could instead have arisen from agents responding to fundamentals not taken into account by the econometricians.

7 This necessary condition for the absence of bubbles has first been proposed in Hamilton and Whiteman (1985).

8 Details of the definitions and sources of variables are given in the Appendix.
Table 1: Integration tests

Test for I(0)

<table>
<thead>
<tr>
<th></th>
<th>ADF(4)</th>
<th>ADF(12)</th>
<th>Z₂</th>
<th>Z_{alpha}</th>
<th>Z_{hat}</th>
<th>Z_{ihat}</th>
</tr>
</thead>
<tbody>
<tr>
<td>p</td>
<td>-0.6</td>
<td>-0.8</td>
<td>-0.1</td>
<td>-0.05</td>
<td>-0.1</td>
<td>-0.08</td>
</tr>
<tr>
<td>m</td>
<td>-0.7</td>
<td>0.2</td>
<td>0.13</td>
<td>0.1</td>
<td>0.14</td>
<td>0.11</td>
</tr>
<tr>
<td>e</td>
<td>-1.2</td>
<td>-1.4</td>
<td>-1.1</td>
<td>-1.0</td>
<td>-1.1</td>
<td>-1.0</td>
</tr>
</tbody>
</table>

Test for I(1)

<table>
<thead>
<tr>
<th></th>
<th>ADF(4)</th>
<th>ADF(12)</th>
<th>Z₂</th>
<th>Z_{alpha}</th>
<th>Z_{hat}</th>
<th>Z_{ihat}</th>
</tr>
</thead>
<tbody>
<tr>
<td>p</td>
<td>-1.9</td>
<td>-1.4</td>
<td>-2.1</td>
<td>-8.1</td>
<td>-1.4</td>
<td>-1.91</td>
</tr>
<tr>
<td>m</td>
<td>-1.8</td>
<td>-1.6</td>
<td>-1.7</td>
<td>-5.9</td>
<td>-2.4</td>
<td>-11.1</td>
</tr>
<tr>
<td>e</td>
<td>-2.3</td>
<td>-1.3</td>
<td>-2.3</td>
<td>-11.3</td>
<td>-6.0</td>
<td>-52.9</td>
</tr>
</tbody>
</table>

Test for I(2)

<table>
<thead>
<tr>
<th></th>
<th>ADF(4)</th>
<th>ADF(12)</th>
<th>Z₂</th>
<th>Z_{alpha}</th>
<th>Z_{hat}</th>
<th>Z_{ihat}</th>
</tr>
</thead>
<tbody>
<tr>
<td>p</td>
<td>-3.1</td>
<td>-1.9</td>
<td>-2.2</td>
<td>-10.0</td>
<td>-11.0</td>
<td>-50.1</td>
</tr>
<tr>
<td>m</td>
<td>-3.7</td>
<td>-2.4</td>
<td>-2.1</td>
<td>-10.2</td>
<td>-10.7</td>
<td>-71.1</td>
</tr>
<tr>
<td>e</td>
<td>-4.2</td>
<td>-2.9</td>
<td>-2.5</td>
<td>-12.4</td>
<td>-17.2</td>
<td>-66.0</td>
</tr>
</tbody>
</table>

Note: Sample period: 1987:2-1991:11. ADF(k): Adjusted Dickey-Fuller test with k lags in the dependent variable. Approximate 5 percent Dickey-Fuller critical value (for a sample size of 50) is -3.60. Blangiewicz and Charemza (1990) have recently computed critical values for the ADF test in small samples. Their 5 percent fractile for T=40 and T=50 is -2.70. Z_{alpha}, Z₁, Z_{hat} and Z_{ihat} are the residual based tests suggested by Phillips (1988) and Phillips and Ouliaris (1990). The 5 percent critical values for Z_{alpha} and Z_{hat} are -20.49 and for Z₁ and Z_{ihat} -3.37.

The various test statistics indicate that all three time series are almost certainly stationary after second differencing, so they are probably all I(2) series. In terms of the above indirect test for deterministic speculative bubbles, this conclusion suggests that the
bubble-interpretation of Poland's hyperinflation should be precluded. However, we would add the warning that these tests do not have very strong power to detect non-integrated series as this was not the purpose they were designed for and so this can not be regarded as conclusive.

3.2 Cointegration tests
The fundamental idea underlying the non-structural cointegration tests employed in this section comes from exploiting the difference between (5) and (6). If the latter is the correct specification, neglecting the bubble terms will lead to the result that the asset price and its fundamental determinants are not cointegrated, i.e. they will drift infinitely far apart. The simplicity of this hypothesis and the possibility of avoiding the structural specification of the process followed by the fundamentals are the major strengths of this sufficient test. We will begin by focusing on the Cagan relationship and see if a bubble could exist purely within the domestic price system. We will then introduce the exchange rate and see how the results alter.

We adopt the well known statistical framework of Johansen (1988, 1990, 1991) for testing and estimating cointegrating vectors, but we will not present an exposition of this framework here. We assume that a given r-dimensional multiple time series is known to be generated by a Gaussian (normally distributed) VAR(k) process. In deriving the consistency properties of Johansen's ML-estimator a number of distributional assumptions were made. In practice it will rarely be known with certainty whether these assumptions are fulfilled for a specific dataset. Additionally, the LR-tests for the presence of cointegration may be quite sensitive to the order of the lags k. If, as is normally the case, the lag structure is prespecified, the test results may simply be a result of the imposed lag specification rather than of the data showing cointegration. One way out of the problem is to let the data determine the lag structure rather than imposing some arbitrary lag structure on the model. We therefore use statistical tools in order to determine the lag structure and in order to check the appropriateness of the distributional assumptions made. First, the unknown order k of the

9 Note that this cointegration test is nonspecific with respect to expectations.
underlying data generating process is assessed via the VAR order selection criteria AIC (Akaike's information criterion), BIC (Schwarz' information criterion) and HQC (Hannan and Quinn's information criterion). We assume an upper bound of \(k = 18 \) for the VAR order and therefore set aside the first 18 observations\(^{10}\). The data up to 1991:11 are used for estimation so that the sample size is \(T = 47 \). The optimal lag length will be the one that minimizes the several statistical criteria.

Based upon this testing process a VAR order of \(k = 12 \) is chosen for the Johansen procedure. Table II contains the tests for the number of cointegrating vectors present between money and prices. To conserve space, only the LR-tests are reported.

Table II: Test of number of distinct cointegrating vectors in the bivariate system \(m_t \) and \(p_t \)

<table>
<thead>
<tr>
<th>Number of vectors</th>
<th>Asymptotic LR-test</th>
<th>Small Sample LR-test</th>
<th>95% Critical Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>35.08</td>
<td>11.03</td>
<td>15.44</td>
</tr>
<tr>
<td>2</td>
<td>1.12</td>
<td>0.35</td>
<td>3.76</td>
</tr>
</tbody>
</table>

Note: There is an unrestricted constant in the VAR. The LR tests based on trace of the stochastic matrix test the hypothesis of reduced rank of \(r \) by setting up the hypothesis that a vector is not a cointegrating vector and then attempt to reject that hypothesis by exceeding the 95% quantiles of the limiting distribution. Estimation was carried out over the sample period 1988:1-1991:12 with \(k = 12 \). The small sample correction is that due to Reimers(1991) and Reinsel and Ahn(1988)

Table III: Residual misspecification tests

<table>
<thead>
<tr>
<th></th>
<th>LB (8)</th>
<th>LB (16)</th>
<th>J-B-Normal</th>
</tr>
</thead>
</table>

\(^{10}\) In carrying out the AIC, BIC and HQC tests, \(k = 18 \) was set to be the maximum lag structure. The number eighteen, we felt, mitigated against the potential problems of insufficient degrees of freedom and yet allowed for a sufficient number of lags to undertake a meaningful analysis with monthly data.
<table>
<thead>
<tr>
<th>m</th>
<th>2.78</th>
<th>14.87</th>
<th>3.98</th>
</tr>
</thead>
<tbody>
<tr>
<td>p</td>
<td>5.91</td>
<td>16.21</td>
<td>5.61</td>
</tr>
</tbody>
</table>

Note: The independence assumption is tested by the Ljung-Box Q-statistics for \(k = 8 \) and \(k = 16 \) [LB(8) and LB(16)]. The tests are asymptotically distributed \(\chi^2(8) \) and \(\chi^2(16) \). The Jarque-Bera normality test is distributed as \(\chi^2(2) \).

In table II, the likelihood ratio test statistics are calculated and compared to the 95% quantiles of the appropriate limiting distribution. The results for the asymptotic LR-test indicate that the two variables are cointegrated\(^1\), although the small sample correction throws some doubt on this. This property can be thought of as a sufficient condition for the absence of self-fulfilling rational bubbles\(^2\) in prices and money. We also calculated various diagnostic tests. The mispecification test statistics for autocorrelation and normality given in Table III indicate that the VAR model provides a satisfactory approximation to the unknown DGP. Further evidence on the static long-run solution is available from Table IV which gives details about how the variables get loaded into the dynamic system together with Wald tests that the loading weights are in fact zero. Table IV demonstrates that, under the assumption of one cointegrating vector, the cointegrating vector is linked with both \(m \) and \(p \). So in terms of causality this result strongly argues that there is feedback between the two variables under consideration. This statistical result reflects the macroeconomic situation in Poland at the end of the eighties. The year 1988 had ended with a wage explosion that carried over into 1989. The price liberalisation introduced in January 1990 was followed by a steep increase in prices. Budget expenditures also soared and the budget deficit exploded. The financing of this deficit by the monetary authorities gave rise to a surge in the supply of money and deep-seated inflationary expectations\(^3\).

\(^{11}\) In most cases this ambiguity is due to the low power of the tests in cases when the cointegration relationship is close to the nonstationary boundary. This problem is often observed in empirical work when the speed of adjustment to the hypothetical steady-state is slow. See Johansen (1990) for details.

\(^{12}\) Since the satisfaction of the transversality condition requires the absence of bubbles the results can also be thought of as tests of the models' transversality condition.

\(^{13}\) Note that the National Bank of Poland is not independent of the government. The new act approved in February 1992 changed this to some extent. Additionally, the effectiveness of monetary policy has been hampered by a rudimentary banking sector and a lack of instruments to control the supply of money.
Table V: The normalised loading weights for the estimated model

<table>
<thead>
<tr>
<th>Loading weights under the assumption of one cointegrating vector:</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>α</td>
<td>m</td>
<td>p</td>
</tr>
<tr>
<td>η</td>
<td>0.45</td>
<td>-2.02</td>
</tr>
<tr>
<td>W (1)</td>
<td>4.29</td>
<td>4.16</td>
</tr>
</tbody>
</table>

Note: The Wald tests [W(1)] for the α matrices are tests for the hypotheses that there are no cointegrating vectors in each equation. The W(1) statistics are asymptotically χ²(1) variates. The normalisation has been carried out so that the β coefficient on money is unity.

And so we are unable to reject the standard Cagan model as an adequate description of the money demand process in Poland. The possibility remains, however, of a speculative bubble in the exchange market which may have influenced prices and caused the hyperinflation. One way to investigate this is to add the exchange rate to our set of variables and to test if the number of cointegrating vectors increases. If purchasing power parity were maintained along with the Cagan equation we would expect to see two cointegrating vectors existing within the set of money prices and exchange rates. We therefore estimate a system for m, p and e and obtain the following results.

Table V: Test of the number of distinct cointegrating vectors in the trivariate system (m, p, e)

<table>
<thead>
<tr>
<th>Number of Vectors</th>
<th>Asymptotic LR-test</th>
<th>Small sample LR-test</th>
<th>95% Critical Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>101.1</td>
<td>24.12</td>
<td>29.68</td>
</tr>
<tr>
<td>2</td>
<td>18.68</td>
<td>4.37</td>
<td>15.41</td>
</tr>
<tr>
<td>3</td>
<td>0.62</td>
<td>0.15</td>
<td>3.76</td>
</tr>
</tbody>
</table>

see notes to table II
Table VII: Loading weights for the estimated trivariate model

<table>
<thead>
<tr>
<th>Loading weights under the assumption of one cointegrating vector:</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
</tr>
<tr>
<td>-----</td>
</tr>
<tr>
<td>α_{it}</td>
</tr>
<tr>
<td>W (1)</td>
</tr>
</tbody>
</table>

See Notes to table IV

The conclusion to be drawn from Table V is almost certainly that there is still only one cointegrating vector, so the addition of the exchange rate has not added an extra vector to the system. Indeed the loading weights and the wald test also indicate that the one vector does not enter the exchange rate equation. So, on the basis of this set of variables the exchange rate is weakly exogenous with respect to money and prices. This, therefore, leaves open the possibility that there might be a bubble in the exchange rate which was the root cause of the inflationary process in Poland.

We must however conclude this section by saying that the evidence of these non-structural tests points fairly conclusively to the absence of a deterministic bubble in the Polish data. This is not surprising, of course, as our priors would lead us to expect that any bubble which might have been present must have been a stochastic one which burst towards the end of the period. In the next section we pursue this further by applying the stochastic bubble tests mentioned earlier.
The problem with detecting stochastic bubbles, stressed by Evans (1991), is essentially that they will only exhibit characteristic bubble properties during the expansion phase. So if we test a complete sample we are unlikely to observe any systematic divergence between the asset price and its fundamentals. We must instead focus on the expansion phase only and look there for some systematic departures. This raises the problem of how we may detect the expansionary phase without prejudging the issue by choosing only those data points which fit our prior views as to what a bubble should look like. We do this by adopting a methodology proposed by Hall and Sola (1993a) which is based on the use of an extension of the standard ADF statistic to allow for the possibility of two regimes in the time series properties of the data using the Hamilton (1990) filter. This sets up the hypothesis that there may be two regimes governing the process generating the asset price and its fundamentals. So we might find that in one regime the data was non-stationary, perhaps even with an explosive root, and in the other regime it was stationary, collapsing back towards the fundamental solution. The option is always open to the filter to find that there is in fact only one significant regime. So the filter decides whether there is in fact more than one regime driving the data as a whole and it provides an endogenous split of the whole sample into the two regimes. We can then examine the two regimes to see if there is any detectable signs of bubble behaviour in each regime separately.

The basic Hamilton filter in its most general form allows endogenously switching regression models. Hall and Sola (1993a) applied this filter to the question of testing for stationarity in the presence of structural changes. In his applications, Hamilton (1988, 1989, 1990) implemented a very limited form of switching where only the constant and the variance of an equation was allowed to switch between regimes. Hall and Sola (1993b) discussed various generalizations of this which allowed the full parameter vector to switch and they also discussed the implications of various possible assumptions about the treatment of dynamic

1In principle the model can estimate as many regimes as desired, in practice degrees of freedom limit the number of regimes which may be estimated. In the case of stochastic bubbles two regimes is a natural choice as they then reflect the expanding and collapsing states of the bubble.
effects. Hall and Sola (1993a) proposed to use this methodology to specify a version of the standard ADF statistic which allows the DGP to switch between discrete regimes. We can think of this in the specific context of rational bubbles, where the motivation for the two regimes is quite obvious. Or we may think of it in the more 'ad hoc' context of general structural breaks (as in Peron, 1989) where we could potentially increase the number of states to allow for any number of structural breaks. The switching parameters (S_t) of the ADF regression are discrete valued state variables. The state can take two possible values (0 or 1), in the example we will consider, although theoretically we can extend this to any number of states.

$$\Delta y_t = S_t(\alpha + \phi y_{t-1} + \sum_{i=1}^{n} \psi_i \Delta y_{t-i})$$

$$+ (1-S_t)(\beta + \phi^* y_{t-1} + \sum_{i=1}^{n} \psi^*_i \Delta y_{t-i}) + (w_0S_t + w_1(1-S_t))u_t \quad (7)$$

So (7) will allow us to ask the question, are both regimes stationary or non-stationary? It will essentially supply us with two ADF statistics, one for each regime.

George Evans (1991) rightly argued that rational bubbles in stock prices are not reliably detectable through the use of standard tests to determine whether stock prices are 'more explosive' than dividends or whether stock prices and dividends are cointegrated. He demonstrated that periodically collapsing bubbles appear to be stationary on the basis of these tests, even though they have explosive conditional means, through a range of monte carlo experiments. Hall and Sola (1993a) demonstrate the effectiveness of the switching ADF test given above by taking the Evans data generation process and showing that it was in fact able to detect the two regimes and that it was able to reveal one of them to have an explosive root while the other was a stable process.

We proceed to apply the switching ADF test outlined in equation (7) to the three series money, prices and exchange rates for Poland. The results of this estimation exercise are shown in table VII, using the same notation as outlined in (7). The results for all three series are strikingly similar, but there is a marked difference between the two regimes. Most of the
period is characterised by a unit root process with moderate drift and fairly simple dynamics. There is strong evidence, however, of a second regime in all three series which is characterised by an unstable root with much more complex dynamics. The last two lines of table VII show the estimated parameter on the levels terms in the ADF formulation along with its associated 't' statistic which would be the normal formal ADF test. In the unit root regime we therefore find coefficients very close to unity with test statistics well below the conventional Dickey-Fuller significance levels but where the coefficients are on the stable side of the unit root. In the unstable regime we find positive coefficient estimates, which indicate an explosive root, and their 't' statistics are clearly well above the conventional Dickey-Fuller values. In the previous section we found that, treating the whole series as structurally stable suggested an I(2) characterization for all three series. Now allowing for the switch to an unstable regime produces, at most, an I(1) characterization of the data for most of the period but with the addition of the finding of an unstable sub-period. So we have strong evidence of a structural change in the data generation process over part of the period which certainly may suggest the presence of a rational bubble but it does not exclude the fundamental explanation.
Table VIII: The switching ADF test for the money, prices and exchange rates.

<table>
<thead>
<tr>
<th></th>
<th>exchange rate</th>
<th>money</th>
<th>prices</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>0.18(2.3)</td>
<td>0.01(2.4)</td>
<td>0.014(0.8)</td>
</tr>
<tr>
<td>ψ_1</td>
<td>0.09(0.2)</td>
<td>0.42(4.3)</td>
<td>0.8(9.6)</td>
</tr>
<tr>
<td>ψ_2</td>
<td>-0.009(0.1)</td>
<td>-0.23(3.9)</td>
<td>-0.05(0.7)</td>
</tr>
<tr>
<td>ψ_3</td>
<td>-0.06(0.8)</td>
<td>0.17(3.1)</td>
<td>0.09(0.8)</td>
</tr>
<tr>
<td>ψ_4</td>
<td>-0.08(0.9)</td>
<td>-0.09(2.0)</td>
<td>-0.02(0.2)</td>
</tr>
<tr>
<td>β</td>
<td>-1.08(2.3)</td>
<td>-6.1(12.3)</td>
<td>-3.03(73.4)</td>
</tr>
<tr>
<td>ψ_1^d</td>
<td>-4.27(17.9)</td>
<td>-2.2(15.4)</td>
<td>-1.49(14.1)</td>
</tr>
<tr>
<td>ψ_2^d</td>
<td>-1.2(9.3)</td>
<td>-0.89(10.1)</td>
<td>-0.33(32.5)</td>
</tr>
<tr>
<td>ψ_3^d</td>
<td>0.2(0.4)</td>
<td>-1.37(9.2)</td>
<td>2.16(15.1)</td>
</tr>
<tr>
<td>ψ_4^d</td>
<td>-1.8(17.9)</td>
<td>-3.1(13.1)</td>
<td>-2.52(14.9)</td>
</tr>
<tr>
<td>σ</td>
<td>0.05(9.4)</td>
<td>0.02(9.3)</td>
<td>0.03(11.7)</td>
</tr>
<tr>
<td>σ^d</td>
<td>0.0006(3.7)</td>
<td>0.01(3.5)</td>
<td>0.00042(2.5)</td>
</tr>
<tr>
<td>ρ</td>
<td>0.88(5.5)</td>
<td>0.82(6.2)</td>
<td>0.88(11.6)</td>
</tr>
<tr>
<td>ν</td>
<td>0.94(24.9)</td>
<td>0.98(43.9)</td>
<td>0.99(66.2)</td>
</tr>
<tr>
<td>ϕ</td>
<td>-0.02(1.9)</td>
<td>-0.00067(0.3)</td>
<td>-0.00058(0.3)</td>
</tr>
<tr>
<td>ϕ^d</td>
<td>0.27(4.2)</td>
<td>1.14(13.3)</td>
<td>0.37(78.3)</td>
</tr>
</tbody>
</table>

Note: Asymptotic ‘t’ statistics in parenthesis
We turn now to Figure 2 to consider the timing of the regimes in the three series. This figure shows the probability of being in each of the two states at each point in time. When the probability is zero we are in the unit root regime and when it is unity we are in the unstable root regime. Unsurprisingly, the switch to the unstable regime occurs for all three series during the hyperinflation period. But the timing of the switch is interesting. The exchange rate has a short period of instability in late 1988 and then in 1989 it is again the first of the three to switch to the unstable regime. This is followed by prices and only later by the money stock. If prices and the exchange rate were both being driven by the money fundamentals, we would have expected to have seen a similar pattern of switching across the two series. In fact, the synchronisation of the two patterns is not very close and we would suggest that this points tentatively towards the conclusion that the main determination of the hyperinflation was a rational bubble in the exchange market. This conclusion must, however, remain tentative as it rests on the difference in the pattern of switching in the price level and the exchange rate and there is no formal way to gauge this difference and the data itself is subject to measurement problems.
Figure 2.

Probabilities of Each State

exchange rate money

prices
The last section has clearly established the possibility of the existence of stochastic bubbles during the Polish hyperinflation period. But as pointed out in the introduction it is virtually impossible to prove the existence of such bubbles. West (1987, 1988) proposed a structural testing procedure based on a comparison of the Euler and ARIMA forms of the specific structural model under consideration. However as West (1987) points out 'The null hypothesis of no bubbles should be rejected only if (a) diagnostic tests on the Euler and ARIMA equations suggest that these equations are acceptably specified, and (b) any difference between the two sets of estimates is unlikely to result from sampling error'. (a) here amounts to the assumption that the finding of a bubble can not be explained by an alternative structural model. This is reasonable when we are confident that the model under consideration along with the marginal process generating the expectations term is structurally stable and adequate. In the case of the Polish data we have already shown in the last section that the univariate properties of the data are subject to structural change and the theoretical models of money demand and price formation are also far less clear cut and universally accepted than is the case with West's example. We are therefore careful in this section not to claim a generic refutation of structural models without bubbles in favour of the bubble hypothesis. Instead, the most we believe can be convincingly achieved is the rejection of a specific structural model against a general alternative which includes both the presence of rational bubbles and the possibility of some other unknown misspecification.

Following Flood and Garber (1980), if inflation can be represented as a function of k lags in the growth of money plus a possible bubble element B, so that the full Cagan model becomes,
then we may state the full model as

$$\begin{align*}
(m_t - p_t) &= \gamma_0 + \gamma_1 (p_{t+1} - p_t) \\
\Delta p_t &= \alpha_1 \pi_{t-1} + \alpha_2 \pi_{t-2} + \ldots + \alpha_k \pi_{t-k} + B_t + \epsilon_t
\end{align*}$$

(8)

where \(\pi_t = (m_{t+1} - m_t) \)

If we therefore estimate (9) but without making any allowance for the possible existence of the bubble term we would expect that the residuals from this equation would contain this term. We therefore propose estimating an equation such as (9), in two steps, and examining the residuals for the possible existence of a stochastic bubble term. If the bubble was deterministic then it would almost certainly be correlated asymptotically with the lagged money growth terms and so the parameter estimates in (9) would be biased and we might actually find reasonably well behaved residuals. However, in the case of a stochastic bubble which we believe is only present for part of the period, the asymptotic covariance between the money growth terms and the bubble will be zero and our parameter estimates should be consistent and the bubble should remain as part of the error process. This means that standard residual diagnostics will have low power to detect the bubble as it may only be operating for a small part of the estimation period and for the bulk of the period the residuals will be perfectly well behaved. We propose to deal with this by continuing the theme of the
last section and we will use a switching Dickey-Fuller test to see if there is evidence for sub-periods of bubble-like behaviour in the error process.

We perform this test for two versions of the basic model, the first is as in (8) with real money and the rate of growth of the money supply as the forcing variable, the second is with the real exchange rate as the dependent variable, a variant of the Cagan model based on purchasing power parity. We then take the residuals from this equation and test them for the presence of a structural break using an unaugmented version of the switching Dickey-Fuller test outlined in (7). (The dynamics should not be necessary as under the assumption of a correctly specified model with no bubble the residuals should be white noise.) This produced the following estimates for the two states in each case.

Table XI. Testing the residuals from the Cagan Model

<table>
<thead>
<tr>
<th>dependent variable</th>
<th>real money</th>
<th>real exchange rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>ϕ</td>
<td>-0.05(1.5)</td>
<td>-0.02(0.5)</td>
</tr>
<tr>
<td>ϕ^d</td>
<td>-0.74(5.6)</td>
<td>-0.53(4.4)</td>
</tr>
</tbody>
</table>

This table shows the parameter on the lagged dependent variable in the Dickey-Fuller regression along with its 't' statistic, which would be the normal test for stationarity, for the two possible states which may exist. In both cases we find very strong evidence of two regimes in the data; One which is highly stable with a t statistic which is well in excess of the standard Dickey-Fuller critical values. And one which is indistinguishable from a unit root, non-stationary term. The non stationary period coincides closely with the hyper inflation period. So we find strong evidence for the appearance of an unstable element in the residuals of the cagan model at precisely the point we believe a bubble may have developed. We would, however, stress that this may be accounted for by a basic misspecification in the structural model under inspection.
This paper has examined the Polish hyperinflation period of the late 1980s with a view to attempting to distinguish between the possibility of a fundamental explanation of inflation in terms of a loose money supply and an explanation based on a rational bubble developing in the prices of the system (either the exchange rate or domestic prices). We have tested the data for the existence of deterministic bubbles and find that we can effectively rule out the possible existence of a deterministic bubble in the Polish case. Interestingly, however, we would note that of the three variables, money prices and exchange rates, only the exchange rate seems to be weakly exogenous with respect to the other two. This may indicate that any strong changes in behaviour may have originated in this sector. We have then gone on to apply a new technique for examining the possible existence of a stochastic, or temporary, bubble. We find strong support for the notion that the basic regime of the price and money variables switched during the hyperinflation period. The timing of the switching in the different series leads us tentatively towards the conclusion that the main origins of the hyperinflation episode lay in the exchange market. Finally, we examine a specific structural model, the Cagan Model, as an explanation of the behaviour of hyperinflations. Here again we are able to demonstrate that there is strong evidence of a structural break developing in this basic model. This again admits the possibility of a bubble explanation although we would stress that it may also simply point to an inadequacy in the structural model under test.
REFERENCES

APPENDIX: Data Sources

All monthly data are in natural logarithms. The sample period is 1988:1 to 1991:11. The source of m and p is IMF International Financial Statistics, various issues and OECD database. The source of e is Koedijk and Kool (1992) and Pick’s World Currency Yearbook, various issues. For the first year the published quarterly narrow money stock data have been transformed to monthly data using a time series process which is solved by the quadratic-linear form of the dynamic programming algorithm [for details, see, for example, Bertsekas (1976), 70-72].

m = Narrow money (billions of Zlotys, end of period, IFS line 34). Before 1989 the data incorporate the commercial banking operations of the NBP. Beginning in 1989, the data cover only the operations of the commercial banks, the number of which increased rapidly.

P = Index of retail prices, 1985=100 (Paasche index, IFS line 64).

e = Black market exchange rate of the Polish Zloty (number of currency units per U.S. dollar, end of period)